A bad enzyme that might protect the brain on DWN PARKINSON DX | Dialysis World Nigeria - DWN
A bad enzyme that might protect the brain on DWN PARKINSON DX
Date Posted: 19/Jan/2018   Deadline: 19/Jan/2018

In the late 1980s, scientists found that MC1 levels were reduced in the brain regions most affected by Parkinson's disease. This finding has been reproduced and is now well-established: many have theorized that, because MC1 levels drop in the substantia nigra of people with Parkinson's, it might be responsible for neuronal death.


However, to date, the meaning of reduced MC1 has remained a mystery. Are MC1 levels the reason why the neurons are dying, is it a protective mechanism sparked by neuronal cell death, or is it simply a symptom of dying neurons?


Many studies that chose to look at the levels of MC1 in the substantia nigra did not compare them with other parts of the brain. So, recently, scientists from the University of Bergen (UiB) in Norway set out to investigate levels of this enzyme in other parts of the Parkinson's-affected brain.


The researchers — led by Charalampos Tzoulis, from the Department of Clinical Medicine at UiB — thought that if MC1 reduction is the primary reason for neuronal breakdown in Parkinson's disease, it should only be reduced in those areas affected by it, remaining at normal levels in the rest of the brain.


To find out whether or not this was the case, they took brain tissue from 18 people with Parkinson's and matched them with 11 healthy control individuals. Their findings are published this week in the journal Acta Neuropathologica.


They discovered that MC1 was, in fact, reduced throughout the entire brain, and it did not correlate with the death of neurons. Parts of the brain that were relatively untouched, such as the cerebellum, still had much lower levels of MC1.


Intriguingly," he adds, "brain cells (neurons) with decreased complex 1 levels are significantly less likely to contain Lewy bodies, the abnormal protein-aggregates that characterize Parkinson's disease."


The conclusion is that reduced levels of MC1 are not necessarily harmful to the brain or involved in cell death — if anything, reduced levels may be protective.


As Tzoulis explains, "It is possible that complex 1 deficiency is part of a compensatory regulation attempting to protect the brain in Parkinson's disease, for instance via decreased production of oxidative free radical species."


These preliminary findings will need to be confirmed, and if they are, it could open up new avenues of research. If MC1 reduction is, in fact, a protective mechanism, perhaps it could be exploited to design the Parkinson's drugs of the future.




Share this news with friends!!!
Like us on Facebook